More Optimal Packings of Equal Circles in a Square
نویسندگان
چکیده
The problem of nding the maximum radius of n non-overlapping equal circles in a unit square is considered. A computer-aided method for proving global optimality of such packings is presented. This method is based on recent results by De Groot, Monagan, Peik-ert, and WWrtz. As an example, it is shown how the method can be used to get an optimality proof for the case n = 7, which has not earlier been published.
منابع مشابه
Optimal Substructures in Optimal and Approximate Circle Packings
This paper deals with the densest packing of equal circles in a square problem. Sharp bounds for the density of optimal circle packings have given. Several known optimal and approximate circle packings contain optimal substructures. Based on this observation it is sometimes easy to determine the minimal polynomials of the arrangements.
متن کاملPacking up to 50 Equal Circles in a Square
The Hungarian mathematician Farkas Bolyai (1775–1856) published in his principal work (‘Tentamen’, 1832–33 [Bol04]) a dense regular packing of equal circles in an equilateral triangle (see Fig. 1). He defined an infinite packing series and investigated the limit of vacuitas (in Latin, the gap in the triangle outside the circles). It is interesting that these packings are not always optimal in s...
متن کاملInterval Methods for Verifying Structural Optimality of Circle Packing Configurations in the Unit Square
The paper is dealing with the problem of finding the densest packings of equal circles in the unit square. Recently, a global optimization method based exclusively on interval arithmetic calculations has been designed for this problem. With this method it became possible to solve the previously open problems of packing 28, 29, and 30 circles in the numerical sense: tight guaranteed enclosures w...
متن کاملA New Verified Optimization Technique for the "Packing Circles in a Unit Square" Problems
The paper presents a new verified optimization method for the problem of finding the densest packings of non-overlapping equal circles in a square. In order to provide reliable numerical results, the developed algorithm is based on interval analysis. As one of the most efficient parts of the algorithm, an interval-based version of a previous elimination procedure is introduced. This method repr...
متن کاملThe Dense Packing of 13 Congruent Circles in a Circle
The densest packings of n congruent circles in a circle are known for n 12 and n = 19. In this paper we exhibit the densest packings of 13 congruent circles in a circle. We show that the optimal con gurations are identical to Kravitz's [11] conjecture. We use a technique developed from a method of Bateman and Erd}os [1] which proved fruitful in investigating the cases n = 12 and 19 by the autho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 22 شماره
صفحات -
تاریخ انتشار 1999